msCentipede: Modeling heterogeneity across genomic sites improves accuracy in the inference of transcription factor binding

نویسندگان

  • Anil Raj
  • Heejung Shim
  • Yoav Gilad
  • Jonathan K. Pritchard
  • Matthew Stephens
چکیده

Motivation: Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework underestimates the substantial variation in the DNase I cleavage profiles across factor-bound genomic locations and across replicate measurements of chromatin accessibility. Results: In this work, we adapt a multi-scale modeling framework for inhomogeneous Poisson processes to better model the underlying variation in DNase I cleavage patterns across genomic locations bound by a transcription factor. In addition to modeling variation, we also model spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-Seq peaks for those factors. Finally, we propose an extension to this framework that allows for a more flexible background model and evaluate the additional gain in accuracy achieved when the background model parameters are estimated using DNase-seq data from naked DNA. The proposed model can also be applied to paired-end ATAC-seq and DNase-seq data in a straightforward manner. Availability: msCentipede, a Python implementation of an algorithm to infer transcription factor binding using this model, is made available at https://github.com/rajanil/msCentipede

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding

Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information i...

متن کامل

Heterogeneity in DNA multiple alignments: modeling, inference, and applications in motif finding.

Transcription factors bind sequence-specific sites in DNA to regulate gene transcription. Identifying transcription factor binding sites (TFBSs) is an important step for understanding gene regulation. Although sophisticated in modeling TFBSs and their combinatorial patterns, computational methods for TFBS detection and motif finding often make oversimplified homogeneous model assumptions for ba...

متن کامل

Mocap: large-scale inference of transcription factor binding sites from chromatin accessibility

Differential binding of transcription factors (TFs) at cis-regulatory loci drives the differentiation and function of diverse cellular lineages. Understanding the regulatory interactions that underlie cell fate decisions requires characterizing TF binding sites (TFBS) across multiple cell types and conditions. Techniques, e.g. ChIP-Seq can reveal genome-wide patterns of TF binding, but typicall...

متن کامل

Heterogeneity of transcription factor binding specificity models within and across cell lines.

Complex gene expression patterns are mediated by the binding of transcription factors (TFs) to specific genomic loci. The in vivo occupancy of a TF is, in large part, determined by the TF's DNA binding interaction partners, motivating genomic context-based models of TF occupancy. However, approaches thus far have assumed a uniform TF binding model to explain genome-wide cell-type-specific bindi...

متن کامل

Efficient Integrative Multi-SNP Association Analysis via Deterministic Approximation of Posteriors.

With the increasing availability of functional genomic data, incorporating genomic annotations into genetic association analysis has become a standard procedure. However, the existing methods often lack rigor and/or computational efficiency and consequently do not maximize the utility of functional annotations. In this paper, we propose a rigorous inference procedure to perform integrative asso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014